
Abstract. Pólya’s theorem has been concluded to be
concerned with graphs, but not with chemical structures,
where it is incapable of treating chiral ligands properly.
In order to take account of chiral ligands along with
achiral ones, coset representations (CRs) for cyclic
subgroups have been examined to classify permutations
of the CRs into proper and improper elements. As a
result, a k-cycle contained in each permutation has been
classified into an enantiospheric, homospheric, or
hemispheric one. Thereby, sphericity indices of k-cycles
have been defined according to the enantiospheric, ho-
mospheric, or hemispheric nature of each k-cycle. On the
basis of the sphericity indices, cycle indices with chirality
fittingness (CIs-CF) have been defined in place of
Pólya’s cycle indices. The CIs-CF have been proved to
be capable of enumerating of stereoisomers with chiral
and achiral ligands. Their capabilities have been con-
firmed by using allene derivatives as examples.

Keywords: Cycle index—Chirality fittingness—
Sphericity index—Pólya’s theorem

1. Introduction

As found in the title of Pólya’s original paper ‘‘Kom-
binatorische Anzahlbestimmungen für Gruppen, Gra-
phen und chemische Verbindungen’’ [1] (translated later
into English as ‘‘Combinatorial enumeration of groups,
graphs, and chemical compounds’’ [2]), combinatorial
enumeration for chemistry has been based on a pre-
sumption that chemical compounds can be regarded as
kinds of graphs. Many graph-theoretical studies have
been conducted according to this presumption, where
each atom or ligand occupying a vertex (node) of a
graph has been implicitly considered to be structureless,
as implicated in books [3, 4, 5] and reviews [6, 7, 8].

Although the presumption has not been explicitly
discussed in such graph-theoretical studies, its involve-
ment can be exemplified if ligands with inner structure
(e.g., chiral/achiral ligands) are taken into consideration.
If we rely on Pólya’s theorem, for example, an enantio-
meric relationship between tetrahedral molecules with
achiral ligands A, B, C, and D cannot be discriminated
from a diastereomeric relationship between tetrahedral
molecules with ABpp, where ligands A and B are achiral
and p and p are enantiomeric in isolation. As a result,
the two isomers (enantiomers) with ABCD are counted
once and the isomers (diastereomers) with ABpp are also
counted once on the action of the symmetric group of
degree 4. Obviously, the latter should be counted twice
from a stereochemical point of view, as they are well
known to be a pseudo-asymmetric case. Thus, Pólya’s
theorem based on the graph-theoretical approach has
turned out to disregard such inner structures as the
chirality/achirality of ligands.

In order to treat the chirality/achirality of ligands,
several approaches have been reported. One approach
has been based on double cosets of permutation groups
[9], which have been extended to be applied to further
elaborate cases [10, 11].

An alternative approach which we have reported as
the unit-subduced-cycle-index approach (USCI) [12] was
based on the subduction of coset representations. In this
approach, we clarified that the sphericity of an orbit is
important to stereochemical discussions when taking
account of the chirality/achirality of ligands [13, 14] and
that the chirality fittingness (CF) due to the sphericity
produces the USCIs with CF, which can be applied to
combinatorial enumerations [15]. As an extension of the
USCI approach, we have reported the subduction of
dominant representations [16], which has been clarified
to produce cycle indices (CIs) equivalent to those gen-
ereated by Pólya’s theorem. A further approach reported
by us [17, 18] was based on the subduction of Q-con-
jugacy representations, which has generated character-
istic monomials (CMs) for combinatorial enumeration.
The CIs derived from the USCIs and the CMs derived
from the the subduction of Q-conjugacy representationsCorrespondence to: S. Fujita
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can be combined with the sphericity concept so as to
produce CIs with CF (CIs-CF) and CMs with CF [19].
Thereby, we have been able to conduct combinatorial
enumeration of isomers with chiral and achiral ligands.

The approaches described in the preceding paragraph
have an apparent disadvantage that they use conjugate
subgroups in their formulations. Such conjugate sub-
groups can be derived from group–subgroup relation-
ships, which are usually difficult to obtain. On the other
hand, a merit of Pólya’s theorem is ascribed to the fact
that it uses conjugacy classes but not conjugate sub-
groups in its formulation. The specification of conjugacy
classes is generally easier than that of conjugate sub-
groups. This merit should be taken into consideration in
cases of brief calculations of isomer numbers, even
though the enumerations due to Pólya’s theorem are
only concerned with molecular formulas but not with
point-group symmetries.

In this paper, the original definition of the sphericity
concept will be reexamined in terms of conjugacy classes
so that Pólya’s theorem will be extended substantially by
combining it with the sphericity concept. This new for-
mulation will provides us with a revolution in our ste-
reochemical viewpoints, i.e., from graphs to chemical
structures.

2. Mathematical formalism

2.1. Conjugacy classes and cyclic subgroups

Let Gð=GiÞ be a coset representation of a point group G,
where Gi is a subgroup of G. The coset representation
Gð=GiÞ can be regarded as a permutation group P
of degree n ¼ jGj=jGij, if the coset representation is
faithful1. In this paper, we will mainly consider such
faithful cases. But the discussions in this paper hold true
for unfaithful cases in which the order of P is not always
equal to the order of G. Moreover, the following
discussions do not lose generality for cases in which
the P corresponds to a sum of such coset representa-
tions, although the present approach takes account of
one coset representation.

An element P of P is a permutation of degree n, which
is represented by a cycle decomposition involving the
number mkðPÞ of k-cycles. Note that Pólya’s theorem
puts zðP Þ ¼ sm1ðPÞ

1 sm2ðPÞ
2 � � � smnðPÞ

n , where s1; s2; . . . ; sn are
dummy variables. It should be emphasized that Pólya’s
theorem does not discriminate whether the element P
corresponds to a proper rotation or an improper one. In
other words, Pólya’s theorem does not take chiral li-
gands into consideration.

On the other hand, because the present approach
equalizes P to the coset representation Gð=GiÞ, each

element P of P corresponds to a proper or an improper
rotation of the point group G through Gð=GiÞ. The
element P is called a proper element if it corresponds to a
proper rotation of G, and called an improper element if it
corresponds to an improper rotation of G. Such an im-
proper element is represented by a product of cycles with
overlines, which emphasize the change of the chirality of
each ligand to the opposite chirality.

Let the cycle decomposition of an improper element P
of P be represented by the number mkðP Þ of k-cycles,
where we place k ¼ 1; 2; . . . ; n and n ¼ jGj=jGij. When
the order of the element P is equal to ‘, the element P
generates a cyclic subgroup:

P‘ ¼ fP 1; P 2; . . . P ‘g: ð1Þ
Because the element of P corresponds to an improper
rotation, P j corresponds to an improper rotation if the
integer j is odd, while it corresponds to a proper rotation
if the integer j is even. Because the resuting cyclic
subgroup P‘ corresponds to an achiral cyclic subgroup
S‘ of G, it contains ‘=2 proper elements and the same
number of improper elements; hence, the integer ‘ is
concluded to be even.

The achiral cyclic subgroup S‘ contains the maximum
chiral subgroup C‘=2, the order of which is half of S‘. Let
us place ‘ ¼ 2‘1‘2, where the integer ‘1 is odd or even
(‘1 � 1) and the integer ‘2 is odd (‘2 � 1). The ‘1 can be
further represented by ‘1 ¼ 2m‘3, where mð� 0Þ is an
integer and ‘3 is an odd number (‘3 � 1). Note that the
power m is selected so that 2m is the largest divisor of ‘1
to leave the odd number ‘3 as a divisor. Thereby, we can
place ‘ ¼ 2� 2m‘3‘2, where ‘3 and ‘2 are odd integers.
There are only two cases as follows:

1. Let us consider ‘0 that is a divisor of ‘=2 (¼ 2m‘3‘2).
Then ‘=‘0 is an even number. Since the order of the
maximum chiral subgroup C‘=2 is ‘=2 (¼ 2m‘3‘2), the
resulting cyclic group C‘0 is a subgroup of C‘=2.
Because C‘=2 is chiral, its subgroup C‘0 is also chiral.
It follows that the corresponding coset representation
S‘ð=C‘0 Þ is enantiospheric, where the degree jS‘j=jC‘0 j
is equal to the even number ‘=‘0.

2. Let us place ‘00 ¼ 2‘1 ¼ 2� 2m‘3. Since we have placed
‘ ¼ 2‘1‘2 ¼ 2� 2m‘3‘2, the number ‘00 is not a divisor
of ‘=2 (¼ 2m‘3‘2). It follows that a cyclic subgroup of
order ‘00 (S‘00) is not a subgroup of the maximum
chiral subgroup C‘=2. This means that S‘00 is an achiral
group. Hence, the corresponding coset representation
S‘ð=S‘00 Þ is homospheric, where the degree jS‘j=jS‘00 j is
equal to an odd number ‘=‘00ð¼ ‘2Þ.

2.2. Sphericities of k-cycles

Let us next examine a k-cycle contained in the improper
element P . In general, the k-cycle generates a cyclic
subgroup Ck of order k, where k is equal to ‘ or to a
divisor of ‘. Since the cylic group Ck is homomorphic to
the cyclic group P , the identity element of Ck corre-
sponds to the kernel of homomorphism N in P‘ (¼ S‘).
The kernel N is a normal subgroup of P‘, where the
order of N is equal to ‘0 ¼ jP‘j=jCkj ¼ ‘=k, as shown in

1For example, a square-planar complex of D4h symmetry is
controlled by a permutation group isomorphic to D4, if no chiral
ligands are taken into consideration. This is an apparent unfaithful
case. If chiral and achiral ligands are taken into consideration,
however, the four-positions of the square-planar complex are
governed by the coset representation D4hð=C002vÞ. For a more
detailed discussion, see Ref. [20]. Such a symbol as jGj represents
the order of the group G.
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theorem 13.2 of Ref. [12]. Note that N is also a cyclic
subgroup of P‘.

Lemma 1 If k is an even number, the k-cycle in an
improper element P corresponds to an enantiospheric
coset representation. Such a k-cycle as contained in an
improper element is here called enantiospheric k-cycle, if
k is even.

Proof If k is an even number, we can consider the cyclic
subgroup C‘0 ð¼ NÞ described previously, where we place
‘0 ¼ ‘=k. Then, the k-cycle corresponds to the coset
representation S‘ð=C‘0 Þ, where its degree is calculated to
be jS‘j=jC‘0 j ¼ ‘=‘0 ¼ ‘=ð‘=kÞ ¼ k. Since k is an even
number, the coset representation S‘ð=C‘0 Þ is enantio-
spheric.

Lemma 2 If k is an odd number, the k-cycle in an
improper element P corresponds to a homospheric coset
representation. Such a k-cycle as contained in an improper
element is here called homospheric k-cycle, if k is odd.

Proof If k is an odd number, we can consider the cyclic
subgroup S‘00 ð¼ NÞ described previously, where we place
‘00 ¼ ‘=k. Then, the k-cycle corresponds to the coset
representation S‘ð=S‘00 Þ, where its degree is calculated to
be jS‘j=jS‘00 j ¼ ‘=‘00 ¼ ‘=ð‘=kÞ ¼ k. Since k is an odd
number, the coset representationS‘ð=S‘00 Þ is homospheric.

Obviously, a k-cycle in a proper element of P always
corresponds to a hemispheric coset representation,
whether k is even or odd. Such a k-cycle as contained in a
proper element is here called a hemispheric k-cycle.

2.3. CF and sphericity indices

According to lemmas 1 and 2, one of the sphericity
indices is ascribed to each of the cases described earlier:

1. An enantiospheric k-cycle in an improper element (i.e.,
k is even) is ascribed to a sphericity index ck. Such an
enantiospheric k-cycle can act on a set of k achiral
ligands of the same kind to maintain the symmetry of
the ligand set. Moreover, it can act on a set of k=2
chiral ligands (p) of the same kind and k=2 of their
enantiomeric ligands (p), where the following two
ways of packing maintain the symmetry of the ligand
set to be invariant, as shown in Fig. 1.

2. A homospheric k-cycle in an improper element (i.e., k
is odd) is ascribed to a sphericity index ak. Such a
homospheric k-cycle can act on a set of k achiral
ligands of the same kind to maintain the symmetry of
the ligand set to be invariant. It is incapable of acting
on a set of chiral ligands.

3. A hemispheric k-cycle is ascribed to a sphericity index
bk, whether k is even or odd. Such a hemispheric

k-cycle can act on a set of k achiral ligands as well as a
set of k chiral ligands to maintain the symmetry of the
ligand set to be invariant.

Thus, the sphericity indices ak, ck, and bk control modes
of ligand packing, which are equivalent to those due to
CF proposed previously [12,13]. Thereby, we define a
CI-CF by using the sphericity indices ak, ck, and bk.

2.4. CIs-CF for combinatorial enumeration

Let P be a coset representation of a point group, as
described earlier. An element P of P is a permutation of
degree n, which is represented by a cycle decomposition
involving the number mkðP Þ of k-cycles (

Pn
k¼1 kmkðP Þ).

Each of the k-cycles corresponds to a sphericity index $k,
where $k is ak if P is an improper element and k is odd, $k
is ck if P is an improper element and k is even, and $k is
bk if P is a proper element. Hence, the element P
corresponds to a product of sphericity indices
$

m1ðPÞ
1 $

m2ðP Þ
2 � � � $mnðPÞ

n . Thereby, a CI-CF for the present
case is defined as follows:

CI� CFðP; $dÞ ¼
1

jPj
X

P2P
$

m1ðPÞ
1 $

m2ðPÞ
2 � � � $mnðPÞ

n ; ð2Þ

where $d is ad if P is an improper element and d is odd,
$d is cd if P is an improper element and d is even, and $d
is bd if P is a proper element.

The discussions described in Chap. 13 of Ref. [12] hold
true for the present case except that the sphericity indices
are taken into consideration. Theorem 13.8 of Ref. [12]
can be rewritten as an extended theorem for treating
substitution with chiral ligands as well as achiral ones:

Theorem 1 Let P be a coset representation of a point
group, which governs a set D of n positions. Suppose that
the cycle structure of Pð2 PÞ is represented by
ð1m1ðPÞ2m2ðP Þ � � � nmnðPÞÞ, where

Pn
k¼1 kmkðP Þ. Each position

of D is occupied by an achiral or a chiral ligand selected
from a set of ligands,

X ¼ fx1; x2; . . . ; xn; p1; p2; . . . ; pn; p1; p2; . . . ; png;
where each xj represents an achiral ligand and each pair of
pj and pj represents an enantiomeric pair of chiral ligands.
Consider isomers having h1 of x1; h2 of x2; . . . ; hn of xn;
h01 of p1, h

0
2 of p2, . . ., h0n of pn; and h001 of p1, h

00
2 of p2, . . .

h00n of pn, where

½h� :h1 þ h2 þ � � � þ hnþ
h01 þ h02 þ � � � þ h0nþ
h001 þ h002 þ � � � þ h00n ¼ n: ð3Þ

Let the symbol Bh denote the number of isomers of such
isomers as having ½h�. A generating function for calculat-
ing Bh is represented by
X

½h�
Bhx

h1
1 x

h2
2 � � � xhn

n p
h01
1 p

h02
2 � � � ph0n

n p
h001
1 p

h002
2 � � � ph00n

n

¼ CI� CFðP; $ dÞ; ð4Þ
where the summation is concerned with all of the partitions
(½h�) shown in Eq. (3). The sphericity indices $d in the CI-
CF are ligand inventories replaced byFig. 1. Two modes of ligand packing for an enantiospheric k-cycle
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ad ¼ xd
1 þ xd

2 þ � � � þ xd
n; ð5Þ

cd ¼ xd
1 þ xd

2 þ � � � þ xd
n

þ 2p
d=2
1 p

d=2
1 þ 2p

d=2
2 p

d=2
2 þ � � � þ 2pd=2

n pd=2
n ; ð6Þ

bd ¼ xd
1 þ xd

2 þ � � � þ xd
n

þ pd
1 þ pd

2 þ � � � þ pd
n þ pd

1 þ pd
2 þ � � � þ pd

n: ð7Þ

3. Results of combinatorial enumeration

3.1. Enumeration based on theorem 1

As an example for showing the usefulness of this
theorem, let us consider an allene skeleton belonging
to a D2d point group,

fI ;C2ð3Þ;C2ð1Þ;C2ð2Þ; rdð1Þ; rdð2Þ; S4; S3
4g;

where the four vertices are numbered from 1 to 4, as
shown Fig. 2. For the sake of simplicity, the right
diagram (2) is used in place of the right formula (1).

Each element of the D2d point group permutes the
numbered positions and produces a permutation (cycles)
shown in Table 1. The resulting set of permutations for
all of the elements is identical with a coset representation
D2dð=CsÞ, which has been described previously [12].

Lemmas 1 and 2 determine the sphericities of every k-
cycles, which produce a product of sphericity indices, as
summarized in Table 1. By applying Eq. (2) to this case,
the corresponding CI-CF is obtained as follows:

CI� CFðD2d; ad; bd; cdÞ ¼
1

8
b41 þ

3

8
b22 þ

1

4
a21c2 þ

1

4
c4:

ð8Þ
Note that jD2d j is equal to 8. This CI-CF is identical with
the ones obtained alternatively by the USCI approach
(theorem 19.5 of Ref. [12]) and by the CM method [19]2.

Suppose that the four positions of the allene skeleton
(1 or 2) are substituted by a set of four atoms selected
from a set of achiral ligands:

La ¼ f A; B; X; Yg ð9Þ
and a set of chiral ligands:

Lc ¼ f p; p; q; q; r; r; s; s; g; ð10Þ

where the symbols with and without an overline
represent a pair of enantiomeric ligands.

According to Eqs. (5), (6), and (7), the ligand inven-
tories for this case are obtained to be

ad ¼Ad þ Bd þXd þYd ; ð11Þ
cd ¼Ad þ Bd þXd þYd þ 2pd=2pd=2

þ 2qd=2qd=2 þ 2rd=2rd=2 þ 2sd=2sd=2; ð12Þ
bd ¼Ad þ Bd þXd þYd þ pd þ pd

þ qd þ qd þ rd þ rd þ sd þ sd : ð13Þ
The inventories (Eqs. 11, 12, 13) are introduced into the
CI-CF (Eq. 8) and the resulting equation is expanded to
give a generating function:

f ¼CI� CFðD2d ; ad ; bd ; cdÞ
¼ðA4 þ B4 þ � � �Þ þ ðA3BþA3Xþ � � �Þ
þ 1

2
½ðA3pþA3pÞ þ ðA3qþA3qÞ þ � � ��

þ 2ðA2B2 þA2X2 þ � � �Þ
þ 2ðA2BXþA2BYþ � � �Þ
þ 3

2
½ðA2BpþA2BpÞ þ ðA2BqþA2BqÞ þ � � ��

þ 3

2
½ðA2p2 þA2p2Þ þ ðA2q2 þA2q2Þ þ � � ��

þ 2ðA2ppþA2qqþ � � �Þ
þ 3

2
½ðA2pqþA2pqÞ þ ðB2pqþ B2pqÞ þ � � ��

þ 3ABXY

þ 6

2
½ðABXpþABXpÞ þ ðABXqþABXqÞ þ � � ��

þ 3

2
½ðABp2 þABp2Þ þ ðABq2 þABq2Þ þ � � ��

þ 4ðABppþABqqþ � � �Þ
þ 6

2
½ðABpqþABpqÞ þ ðAXpq þAXpqÞ þ � � ��

þ 1

2
½ðAp3 þAp3Þ þ ðAq3 þAq3Þ þ � � ��

þ 3

2
½ðAp2pþApp2Þ þ ðAq2qþAqq2Þ þ � � ��

þ 3

2
½ðAp2qþAp2qÞ þ ðBp2qþ Bp2qÞ þ � � ��

þ 6

2
½ðAppqþAppqÞ þ ðBppqþ BppqÞ þ � � ��

þ 6

2
½ðApqrþApqrÞ þ ðBpqrþ BpqrÞ þ � � ��

� � � : ð14Þ

Fig. 2. Convention for drawing allene derivatives

Table 1. Product of sphericity indices for allene

Element Permutation
(cycles),
D2dð=CsÞ

Type of
rotation

Product of
sphericity
indices

I � (1)(2)(3)(4) Proper b4
1

C2ð3Þ � (1 4)(2 3) Proper b2
2

C2ð1Þ � (1 2)(3 4) Proper b2
2

C2ð2Þ � (1 3)(2 4) Proper b2
2

rdð1Þ � ð1Þð2 3Þð4Þ Improper a2
1c2

rdð2Þ � ð1 4Þð2Þð3Þ Improper a2
1c2

S4 � ð1 2 4 3Þ Improper c4
S3
4 � ð1 3 4 2Þ Improper c4

2The term ð1=4Þb4 in Eq. (44) of Ref. [19] should read ð1=4Þc4, as
shown in Eq. (8) of the present article
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Note that each coefficient indicates the number of
isomers for achiral derivatives or the number of
enantiomeric pairs for chiral derivatives. For example,
the term 1

2 ðA3pþA3pÞ shows one pair of enantiomers
(A3p and A3p). These values are consistent with those
derived by an alternative method, which were reported
in Chapt. 21 of Ref. [12]3.

3.2. Enumerated isomers for testing the present approach

3.2.1. Isomers with achiral ligands only

As an example of isomers having achiral ligands only, let
us examine the term ABXY in Eq. (14), where the
coefficient of the term ABXY is equal to 3. According to
this result, we can depict three isomers shown in Fig. 3,
i.e., 3a (paired with 3b), 4a (paired with 4b), and 5a
(paired with 5b). Stereochemically speaking 3a (paired
with 3b) is a constitutional isomer with 4a (paired with
4b) and 5a (paired with 5b). The isomers 4a (paired with
4b) and 5a (paired with 5b) are in diastereomeric
relationship with each other.

3.2.2. Isomers with chiral and achiral ligands

On the other hand, we encounter more complicated
cases if we take account of chiral ligands along with
achial ligands. For example, the coefficient of the term
ABpp is equal to 4 in Eq. (14). Thus, we can depict four

isomers, as shown in Fig. 4, i.e., 6, 7, 8a (paired with 8b),
and 9a (paired with 9b).

The two isomers 6 and 7 in the top row of Fig. 4 are
achiral so that they are converted into themselves (or
homomers) by all of the elements of D2d (Table 1). As
found easily, they are so-called ‘‘pseudo-asymmetric
commpounds’’, since they are determined to be diaster-
eomeric to each other, where the improper elements of
D2d (Table 1) invert the skeleton chirality as well as the
ligand chirality. Note that 6 is converted into 7 and vice
versa, if the inversion of the ligand chirality is not taken
into consideration.

The isomers 8a (paired with 8b) and 9a (paired
with9b) in the bottom row of Fig. 4 are respectively
chiral, where the improper elements of D2d (Table 1)
cause the reflection between 8a and 8b or between 9a and
9b. The relationship between 8a (paired with 8b) and 9a
(paired with 9b) in the bottom row is determined to be
diastereomeric. The relationship between the top row
and the bottom row is determined to be constitutionally
isomeric.

4. Comparison of Pólya’s theorem with theorem 1

4.1. Pólya’s theoerm as a special case of theorem 1

As found in the formulation described previously,
Pólya’s theorem is a special case of theorem 1, where it
takes account of achiral ligands only. Thus, the
sphericity indices of three kinds (ad , cd , and bd ) in Eq.
(2) are neglected to generate a dummy variable of a
single kind (sd ) so that Eq. (2) is converted into the
following Pólya’s CI:

CIðP; sdÞ ¼
1

jPj
X

P2P
s
m1ðPÞ
1 s

m2ðPÞ
2 � � � smnðPÞn ; ð15Þ

where P represents a permutation group that comprises
usual permutations. where P represents a permutation

Fig. 3. Allene derivatives with the formula ABXY

Fig. 4. Allene derivatives with the formula ABpp

3The value listed at the intersection between the ABpp row and the
Cs column of Table 21.3 (Ref. [12]) should read 2. The
corresponding structural formulas have been correctly depicted as
structures 53 and 54. Equation (48) of Ref. [19] contains erroneous
terms. The term (1/2)(Ap2q � � �) should read (3/2)(Ap2q � � �) and the
term A2q�p should read A2q�q, as shown in Eq. (14) of the present
article.
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group that comprises usual permutations. Note that no
rotoreflections are taken into consideration. Moreover,
the three ligand inventories (Eqs. 5, 6, 7) are replaced by
a single ligand inventory as follows:

sd ¼ xd
1 þ xd

2 þ � � � þ xd
n : ð16Þ

The comparison of the present formulation (based on
Eqs. 2, 5, 6, 7) with Pólya’s theorem (based on eq. 15 and
eq. 16) indicates the scope and limitations of graph-
thereoretical approaches [2, 4] and of permutation-group
approaches [21, 22], where ligands on vertices or nodes
of a graph are regarded as points or structureless objects.
In other words, chiral ligands (or other objects having
structure) are not taken into consideration. Hence, these
approaches are insufficient to discuss stereochemitry that
is concerned with compounds having both achiral and
chiral ligands.

This point can directly be confirmed by the fact that
Eq. (16) for Pólya’s theorem has the same form as Eq.
(5) for the present formulation.

4.2. Formal application of Pólya’s theoerm to isomer
counting by considering both achiral and chiral ligands

4.2.1. Other ligand inventories and generating functions

If the framework based on Pólya’s theorem is formally
applied to cases in which chiral ligands are involved, the
following inventory may be used in place of Eq. (16).

sd ¼xd
1 þ xd

2 þ � � � þ xd
nþ

pd
1 þ pd

2 þ � � � þ pd
n þ pd

1 þ pd
2 þ � � � þ pd

n: ð17Þ
However, this type of calculation results in the violation
of CF, which has been discussed in our previous papers
[14, 23].

To exemplify such violation of CF, we examine allene
derivatives having chiral ligands by using Pólya’s theo-
rem. The permutation group P that is isomorphic to the
point group D2d of the allene skeleton is represented as
follows:

P ¼fð1Þð2Þð3Þð4Þ; ð1 4Þð2 3Þ; ð1 2Þð3 4Þ; ð1 3Þð2 4Þ;
ð1Þð2 3Þð4Þ; ð1 4Þð2Þð3Þ; ð1 2 4 3Þ; ð1 3 4 2Þg: ð18Þ

which are the same permutations but different in the
absence of overlines (see Table 1).

By applying Eq. (15) to this case, the corresponding
CI is obtained as follows:

CIðP; sdÞ ¼
1

8
s41 þ

3

8
s22 þ

1

4
s21s2 þ

1

4
s4; ð19Þ

which is obtained by converting ad , bd , and cd into sd in
Eq. (8). According to Eq. (17), the ligand inventory for
this case is obtained to be

sd ¼Ad þ Bd þXd þYdþ
pd þ pd þ qd þ qd þ rd þ rd þ sd þ sd : ð20Þ

This inventory (Eq. 20) is introduced into the CI (Eq. 19)
and the resulting equation is expanded to give a
generating function:

f 0 ¼CIðP; sdÞ
¼ðA4 þ B4 þ � � �Þ þ ðA3BþA3Xþ � � �Þ
þ ðA3pþA3pþA3qþA3qþ � � �Þ
þ 2ðA2B2 þA2X2 þ � � �Þ
þ 2ðA2BXþA2BYþ � � �Þ
þ 2ðA2BpþA2BpþA2BqþA2Bqþ � � �Þ
þ 2ðA2p2 þA2p2 þA2q2 þA2q2 þ � � �Þ
þ 2ðA2ppþA2qqþ � � �Þ
þ 2ðA2pqþA2pqþ B2pqþ B2pqþ � � �Þ
þ 3ABXY

þ 3ðABXpþABXpþABXqþABXqþ � � �Þ
þ 2ðABp2 þABp2 þABq2 þABq2 þ � � �Þ
þ 3ðABppþABqqþ � � �Þ
þ 3ðABpqþABpqþAXpqþAXpqþ � � �Þ
þ ðAp3 þAp3 þAq3 þAq3 þ � � �Þ
þ 2ðAp2pþApp2 þAq2qþAqq2 þ � � �Þ
þ 2ðAp2qþAp2qþ Bp2qþ Bp2qþ � � �Þ
þ 3ðAppqþAppqþ Bppqþ Bppqþ � � �Þ
þ 3ðApqrþApqrþ Bpqrþ Bpqrþ � � �Þ � � � : ð21Þ

4.2.2. Isomer equivalency

Let us now compare Eqs. (14) and (21) with respect to
several representative cases.

1. Chiral isomers with achiral ligands only. As an
example of isomers having achiral ligands only, let us
compare the term ABXY in Eq. (21) with that in
Eq. (14). The coefficient of the term ABXY is equal to
3 in Eq. (14) as well as in Eq. (21). This result based
on Pólya’s theorem is identical with the one based on
theorem 1, since isomers with achiral ligands only are
enumerated by Pólya’s theorem. The three isomers
have already been shown in Fig. 3, i.e., 3a (paired
with 3b), 4a (paired with 4b), and 5a (paired with 5b).

2. Achiral isomers with achiral and chiral ligands. The
coefficient of the term ABpp is equal to 3 in Eq. (21),
whereas the corresponding value is equal to 4 in Eq.
(14). This is because the two isomers 6 and 7 among
the isomers depicted in Fig. 4 are equalized to be
counted as one isomer. Thus, 6 and 7 are interchange-
able by the permutation ð1 4Þð2Þð3Þ, which was
involved in the derivation of the CI (Eq. 15). Note
that this permulation does not take a reflection of
ligand chirality into consideration.

3. Chiral isomers with achiral and chiral ligands. In Eq.
(14), the number of isomeric pairs of enantiomers is
given by the coefficient of such a composite term as
(1/2)(ABp2 + ABp2). Hence the term (3/2)(ABp2 +
ABp2) in Eq. (14) means that there exist three pairs of
enantiomers, as depicted in Fig. 5. Thus, we can find
10a (paired with 10b), 11a (paired with 11b), and 12a
(paired with 12b). The two enantiomers of each
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enantiomeric pair are interchangeable by the impro-
per permutation ð1 4Þð2Þð3Þ. The three pairs of
enantiomers cannot be equalized by all of the
permutations [D2dð=CsÞ] listed in Table 1 so that they
do not coincide with each other on the action of
D2dð=CsÞ but they are correlated to each other by the
same composite term (1/2)(ABp2 + ABp2).

On the other hand, the coefficient of the term ABp2 in
Eq. (21) shows the presence of two molecules, which
corresponds to 10a as one molecule and a pair of
diastereomers (11a and 12a) as one molecule. In a
similar way, the coefficient of the term ABp2 in Eq.
(21) indicates the presence of two molecules, which
corresponds to 10b as one molecule and a pair of
diastereomers (11b and 12b). It should be noted that
the two diastereomers of the pair (11a/12a) or of the
pair (11b/12b) are equalized by the permutation
ð1 4Þð2Þð3Þ. It follows that the action of P (Eq. 18)
forces us to regard them as one molecule under the
assumption of Pólya’s theorem. Moreover, the pair
(11a/12a for ABp2) and the pair (11b/12b for ABp2)
cannot be correlated to each other on the action of P
(Eq. 18), although the two pairs are enantiomeric to
each other.

4.3. Conceptual revolution from graphs to chemical
structures

As shown in the preceding discussions, theorem 1 of the
present approach is based on models in which a skeleton
can take chiral and achiral ligands. Thus, theorem 1
regards a coset representation of a point group as a
homomorphic permutation group so that each permuta-
tion of the coset representation is classified into a proper
or improper element. Thereby, chiral ligands along with
achiral ligands can be properly treated as substituents
for a skeleton.

On the other hand, Pólya’s theorem is based on
models in which a skeleton takes achiral ligands only.
Thus, Pólya’s theorem uses a permutation group di-
rectly, so it is incapable of classifying proper and im-
proper elements. As a result, Pólya’s theorem cannot
treat the substitution of chiral ligands properly.

In summary, theorem 1 is capable of enumerating
chemical structures, whereas Pólya’s theorem is incap-
able of enumerating chemical structures but is only
concerned with graphs. It follows that the conceptual
change from Pólya’s theorem to theorem 1 has provided
us with a revolution in our stereochemical viewpoints,
i.e., from graphs to chemical structures.

5. Conclusion

The detailed discussions of the present paper have
shown that Pólya’s theorem is concerned with graphs,
but not with chemical structures, where it is incapable of
treating chiral ligands properly. In order to take account
of chiral ligands along with achiral ones, sphericity
indices of k-cycles have been defined according to the
enantiospheric, homospheric, or hemispheric nature of
each k-cycle. Thereby, CIs-CF have been defined so as to
enumerate stereoisomers with chiral and achiral ligands.
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2. Pólya G, Read RC (1987) Combinatorial enumeration of

groups, graphs, and chemical compounds. Springer Berlin
Heidelberg New York

3. Harary F, Palmer EM (1973) Graphical enumeration. Aca-
demic, New York

4. Balaban AT (ed) (1976) Chemical applications of graph theory.
Academic, London
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